Um interessante experimento sobre convecção

Uma forma de transmissão do calor que ocorre geralmente nos líquidos e gases é a convecção. Ela surge quando, por algum motivo, uma região se esquenta mais e sobe, ou uma delas se esfria e desce, provocando correntes de movimentos ascendentes ou descendentes no fluido. Este efeito pode ser observado e aproveitado em diversas situações práticas. Vamos ver algumas delas:
1)-Em sistemas de aquecimento solar (foto), se as placas coletoras ficarem posicionadas em um nível abaixo do reservatório, não há necessidade de instalar bombas para que a água quente suba e seja armazenada. Ela sobe ao reservatório naturalmente, devido à convecção.
2)-Já em alguns refrigeradores horizontais de supermercados não há portas (foto). O que garante que os produtos permaneçam gelados, mesmo no verão, é justamente o fato de que o ar mais frio produzido permanece em uma camada baixa que isola os alimentos.
3)-Quando uma vela é acesa na Terra, o ar quente formado perto da parafina sobe, formando uma corrente ascendente que define o formato da chama, ao passo que em um ambiente de microgravidade o formato se torna esférico. O teste foi feito no interior da ISS (foto).
4)-Os praticantes de asa-delta ou parapente (foto), para aproveitarem ao máximo seus passeios aéreos, buscam localizar funis de correntes térmicas ascendentes. Um bom indicador delas pode ser os urubus, que também se aproveitam deste fenômeno natural para ganharem altitude sem esforço.

O experimento 
Para que meus alunos fixassem melhor este conceito através de uma visualização mais clara, decidi realizar com eles um experimento no laboratório da escola, usando um aquário preenchido com água à temperatura ambiente. Coloquei corante laranja em um bequer com água aquecida e pedi para que um aluno a despejasse em um funil, de tal forma que ela sairia no fundo da água do aquário, e outra aluna despejou água gelada com corante azul na superfície. Assim pudemos observar claramente a água quente subindo e a fria descendo. Vejam o vídeo que gravei:
No final, tirei uma foto do resultado que ficou bem interessante.


Compartilhe:

O perigoso crescimento da pseudofísica

A pseudofísica teve um rápido crescimento nas últimas décadas. Entre os fatores que contribuíram para isso incluem-se várias deturpações da física moderna, especialmente, da Teoria Quântica.
Alguns físicos proeminentes do século passado apresentaram perspectivas filosóficas que foram equivocadamente associadas à física moderna, e o escasso conhecimento do público sobre os princípios fundamentais daquela então nova ciência fizeram com que distorções destas filosofias promovessem absurdos tais como a cura quântica, terapias de toque quântico, pulseiras de equilíbrio (power balance) com selo quântico (foto) e tantos outros.
Tomemos dois exemplos de conceitos da física moderna que foram desvirtuados: 
1 - A consideração de que os fótons têm consciência, usando como argumento a experiência da fenda dupla;
2 - A suposição de que a energia seria uma espécie de espírito, usando uma interpretação equivocada  da fórmula E = mc².

Fótons conscientes?
Toda a Teoria Quântica não relativística é baseada em dois pressupostos fundamentais sobre ψ, a solução da equação de Schrödinger. O primeiro é que o quadrado do valor absoluto de ψ corresponde à probabilidade do estado de um sistema. O segundo pressuposto é o princípio da sobreposição: Se existem vários caminhos disponíveis para o sistema, o ψ total é a soma ponderada de forma adequada às ψs de cada caminho.
Estes dois pressupostos têm sido fonte de muitas confusões. Infelizmente, elas foram promovidas por algumas das próprias pessoas que criaram a teoria, o que acabou encorajando as futuras gerações das décadas de 1960 e 1970. Um exemplo clássico é o livro O Tao da Física: um paralelo entre a física moderna e o misticismo oriental escrito em 1975 por Fritjof Capra. O outro é A Dança dos Mestres Wu Li: uma Visão Geral da Nova Física, escrito por Gary Zukav, os quais inclusive receberam citações simpatizantes de renomados físicos da época, como Werner Heisenberg, Niels Bohr, e J. Robert Oppenheimer.

Sobre a experiência da fenda dupla, em A Dança dos Mestres Wu Li, o autor Zukav imagina-se fazendo o experimento duas vezes, primeiro com uma das fendas fechada, e o segundo com as duas fendas abertas. Ele pensa: 
Como é que o fóton na primeira experiência "sabia" que a segunda fenda não estava aberta? ... Quando disparou-se o fóton e ele atravessou a primeira fenda, como é que ele "sabia" que deveria ir para uma área escura, se a outra fenda estivesse aberta? ... Não há uma resposta definitiva para essa questão. Alguns físicos ... especulam que os fótons podem ser conscientes! 
O uso repetido de Zukav da palavra "sabia" já sugere um fóton inteligente!
Mas apesar do que afirma Zukav, a diferença entre os dois cenários não surge porque o fóton teria algum conhecimento místico, mas porque ψ é uma superposição de todos os possíveis caminhos - um caminho, se apenas uma fenda está aberta, e dois caminhos se ambas estão abertas.
A quadratura do valor absoluto de ψ para um caminho leva a uma distribuição de probabilidades que é diferente da dos dois caminhos; a última conduz ao aparecimento de bandas claras e escuras. 

Espírito = mc²
A palavra da física mais usada na literatura mística é "energia." Positivo e negativo, carma, e qi são apenas alguns exemplos de "energias" à deriva no mar do misticismo. E a mais famosa equação da física, E = mc², equipara a energia à massa, que é material. Assim, a equivalência do espírito imaterial ou alma com a matéria passa a ocupar o centro do misticismo.
Mas a energia é realmente imaterial? 
A energia é uma propriedade da matéria. Por exemplo, a energia cinética é a energia associada com a velocidade de um objeto. Perguntar se a energia cinética é material é um absurdo tão grande quanto perguntar se a velocidade é material. A velocidade é uma propriedade da matéria em movimento. Esta confusão de matéria com uma das suas propriedades de energia é uma armadilha tão comum na qual até mesmo os físicos treinados podem cair, e uma ferramenta perigosamente eficaz que os charlatões usam para promover os seus misticismos.

O exemplo mais tentador é quando E = mc² é aplicada à aniquilação matéria-antimatéria, em que a matéria é transforma inteiramente em "energia pura". No entanto, o "E" à esquerda representa a propriedade de alguns materiais ou partículas que podem não ter massa, como os fótons. Um fóton que atinge um elétron e muda seu estado é tão material como um elétron incidente que faz a mesma coisa.
O "E" de E = mc² é sempre a energia de duas ou mais partículas que podem produzir a massa do lado direito. Não há nenhum exemplo na natureza em que se transforma massa em energia (ou vice-versa) sem a presença de algumas partículas ou materiais que transportam essa energia. Portanto, não há nenhuma conexão entre a equivalência alma-matéria do misticismo e a equivalência energia-massa da física moderna.

Alfabetização científica
A pseudofísica é poderosa demais para ser combatida no âmbito popular. Os meios de divulgação estão mais interessados em vender bem uma ideia do que debater responsavelmente se ela é ou não cientificamente correta. No entanto,  nas salas de aula está a esperança de que nossos filhos e netos não se entreguem à mesma irracionalidade que tem afligido atualmente a nossa geração. No ensino da física, tanto no Ensino Médio como na faculdade, poderiam ser propostos trabalhos no sentido de tornar os alunos conscientes dos absurdos pseudocientíficos e do perigo que eles podem representar para o futuro da humanidade.

Fonte:
http:physicstoday/article/69/5/10.1063/PT.3.3151 
Compartilhe:

Será que estamos perto de obter a primeira imagem do buraco negro no centro da Via Láctea?

Os buracos negros são extremamente difíceis de serem observados e sua localização normalmente é "denunciada" pelo movimento de corpos celestes próximos. No entanto, cientistas pretendem capturar, provavelmente até o ano de 2017,  o que seria a primeira imagem da estrutura do horizonte de eventos de um buraco negro supermassivo, chamado de Sagittarius-A* (lê-se Sagitarius A-estrela), que tem um tamanho 17 vezes maior que o nosso sol, e está localizado no centro de nossa galáxia, a Via Láctea (imagem), a uma distância de 25.000 anos-luz. 
Isto quer dizer que estaríamos vendo uma imagem de como este buraco negro era há 25.000 anos, já que os raios provenientes dele, viajando à velocidade da luz (300.000 km/s) gastam este tempo para se deslocarem de lá até os radiotelescópios situados na Terra. Diversos radiotelescópios estão posicionados em pontos diferentes, e formam juntos um grande sistema mundial de observação chamado de Event Horizon Telescope (EHT). Naturalmente, como a luz visível é capturada pelo buraco negro, o que estaríamos vendo seria uma "imagem" do horizonte de eventos, região localizada na sua periferia, e que seria obtida a partir de captações de outros tipos de ondas eletromagnéticas emitidas, como raios-X, por exemplo, que estão fora do nosso espectro visível. 
Vejam o vídeo a seguir, que é curtinho, e faz um resumo do que se pretende e como está sendo desenvolvida a pesquisa. Para quem sabe um pouco de inglês, ajuda, mas quem não sabe, bastam as imagens, que foram super bem montadas. Eu encontrei este vídeo no facebook na página de Hashem Al-Ghaili, que divulga também vários outros assuntos científicos interessantes. Eu recomendo.

Compartilhe:

Como a sanduicheira elétrica sabe o instante exato de avisar que o lanche está pronto?

Em uma aula prática de Física que realizei este ano, mostrei aos alunos uma aplicação do conceito de dilatação térmica, relacionado ao controle e funcionamento de uma sanduicheira elétrica. 
Alguns dias antes do experimento, pedi para que o nosso assistente técnico de laboratório, Luiz, desmontasse uma sanduicheira velha que levei à escola, e depois de muito procurar, ele encontrou e retirou uma pequena lâmina bimetálica circular que estava próxima à chapa de aquecimento, acoplada a um interruptor que, quando pressionado, desligava as resistências elétricas, ao mesmo tempo em que fazia acender uma lâmpada verde. 
A maioria das sanduicheiras acende uma das lâmpadas quando a colocamos na tomada, e depois de algum tempo, outra lâmpada (verde), avisando que o sanduíche está pronto. Vejam a foto da sanduicheira que comprei para substituir a velha que eu levei na escola.

A aula
Ao iniciar a aula, perguntei primeiramente aos alunos se eles sabiam dizer como a sanduicheira reconhecia o momento certo de acender a lâmpada verde. A maioria deles não soube informar, e então eu comecei fazendo uma demonstração simples com um pedaço de papel com uma das faces laminadas, como os que são usados no interior de alguns maços de cigarro.  Ao esquentá-lo, os alunos puderam verificar que o papel se curvava, devido à diferença de dilatação entre os materiais. Esta experiência eu já havia observado em alguns livros e vídeos. Vejam um exemplo:
Logo depois, expliquei que podemos usar dois metais com diferentes coeficientes de dilatação para criarmos uma lâmina bimetálica, como a usada na sanduicheira, e que ao ser aquecida, também se dobra, empurrando o interruptor e acendendo a luz verde. Logo após colocar a pequena lâmina na chapa de um aquecedor elétrico, pudemos perceber que ela se dobrava repentinamente, dando até um "pulinho" na chapa do aquecedor. Vejam: 
Eles entenderam facilmente que esta dobra rápida na lâmina era responsável por pressionar o interruptor do circuito. Depois disso, quiseram filmar o "pulinho", e então repeti algumas vezes, tirando e colocando a lâmina na chapa. Eles se divertiram e ao mesmo tempo aproveitaram para entender a importância de aprendermos determinados fenômenos físicos e suas utilidades em nosso dia-a-dia.
Compartilhe:

Vêm aí uma explosão de Ondas Gravitacionais

Enquanto você lê este post, vários pares de buracos negros estão se fundindo em algum lugar do universo. Isto é o que se pode concluir a partir das observações iniciais do observatório LIGO (sigla em inglês para Observatório de Ondas Gravitacionais por Interferômetro Laser), que em fevereiro anunciou a primeira detecção de uma onda gravitacional, confirmando previsão da teoria da relatividade geral de Albert Einstein. A onda gravitacional detectada alcançou a Terra à velocidade da luz, em 14 de Setembro de 2015, e originou-se de um par de buracos negros que colidiram a 1,3 bilhões de anos-luz de distância.
Na mesma época, o LIGO detectou também um outro sinal suspeito de onda gravitacional que recebeu menor atenção, e  que embora não tenha sido tão forte, pareceu ser promissor.

A Outra Colisão
Uma análise do referido evento, registrado como LVT 151012, tem mostrado com 90% de certeza que ele também teria surgido a partir da colisão de um par de buracos negros. Isso não foi suficiente para que os cientistas considerassem a "detecção", mas a equipe do LIGO ficou confiante, tanto que estão agora usando estes dados para começarem a montar um retrato dos buracos negros no universo.
O palpite dos cientistas é de que a cada hora alguns buracos negros binários estão se fundindo em nosso universo. Isso implica que devemos ter dezenas de detecções ao longo dos próximos anos, e centenas até o final da década, e este número é o suficiente para fazermos algumas descobertas astronômicas bastante significativas.

A partir do mês de setembro deste ano, quando se reiniciarem os trabalhos de busca destas ondas, serão recolhidos cada vez mais eventos. O LIGO pode fazer isso porque ele não é limitado como os telescópios. Seus detectores podem "ver" pequenos efeitos de deformação no espaço-tempo, provocados por grandes objetos. Estas ondas gravitacionais transportam informações sobre a massa, rotação e localização de um buraco negro.

Apenas cerca de 19 buracos negros de massa estelar são conhecidos na Via Láctea, e considerando que nossa galáxia tem centenas de bilhões de estrelas, esse número não deve corresponder à quantidade real existente. No entanto, a verdadeira dimensão da população de buracos negros  ainda permanece desconhecida.
Na verdade, antes do LIGO, os astrônomos não estavam otimistas sobre a possibilidade da detecção de buracos negros binários. Em vez disso, a maioria dos especialistas pensava que as primeiras observações do LIGO viriam da fusão de estrelas de nêutrons binárias. Os astrônomos já tinham visto esses núcleos de supernovas colapsadas que orbitam umas às outras, e estimativas teóricas previam que o LIGO iria captar cerca de 40 dessas incorporações de estrelas de nêutrons, e entre 10 e 20 fusões de buracos negros, a cada ano.

Com a passar do tempo, à medida que mais detecções forem obtidas no LIGO, os astrônomos poderão começar a ter uma ideia melhor do tamanho, formações e comportamentos da maioria dos buracos negros. É apenas uma questão de tempo para termos a confirmação de que estamos entrando definitivamente em uma nova era de descobertas astronômicas, feitas não somente através de observações de telescópios ou captação de ondas eletromagnéticas nos radiotelescópios, mas através de vibrações no tecido do espaço-tempo.

Fonte:
http://www.astronomy.com/news/2016/04/prepare-for-an-explosion-of-gravitational-wave-detections  
Compartilhe:

Cálculo da potência útil de um forno micro-ondas

Nesta semana realizei uma experiência de Física com meus alunos, para determinarmos a potência útil de um forno de micro-ondas. Inicialmente, aproveitei para diferenciar os conceitos de Potência Útil, que é aquela efetivamente usada pelo forno para aquecer os alimentos, e a Potência Total Consumida da rede elétrica, que pode ser vista indicada na maioria dos aparelhos. Uma parcela desta Potência Total Consumida é usada para fazer o aparelho funcionar, por exemplo para ligar as lâmpadas e mostradores digitais, girar a base de vidro no interior, e também para produzir as ondas no magnetron. A outra parcela (a maior porcentagem) é usada para agitar as moléculas de água, gordura, ou açúcares, contidos nos alimentos, e esta é a que chamaremos de Potência Útil, a qual queremos determinar.
A Experiência
Inicialmente medimos com uma balança a massa (m) de água contida em um becker, e com um termômetro, a temperatura inicial (ti). Ligamos o forno durante um tempo (T), e depois medimos a temperatura final (tf). A quantidade de calor recebida pela água (Q) foi então calculada pela fórmula deduzida na teoria da Termologia:

Q = m . c . Δt  =  m . c . (tf - ti)

onde c é o calor específico da água, que vale 1 cal/gºC.

No nosso experimento ficou:

Q = 227 . 1 . (43 - 25) = 4086 calorias

Para encontrarmos a potência útil (Pot út) dividimos Q por T:

Pot út = Q/T

Como o tempo de aquecimento, indicado no cronômetro do micro-ondas, foi de 30 segundos, obtivemos:

Pot út = 4086/30 136,2 cal/s

Atrás do forno, que eu empresto da sala dos professores para realizar o experimento,  estava indicada uma potência de 700 W, que corresponde ao valor da Potência Total Consumida  (Pot tot)  da rede elétrica.

Para compararmos Pot út     e   Pot tot     convertemos o valor da Pot út  em watts (W). Para isso, basta multiplicar por 4,2. Obtivemos, então:

Pot út = 136,2 . 4,2 572 W

Finalmente concluímos que dos 700 W fornecidos ao forno pela rede elétrica, somente 572 W foram utilizados para aquecer a água, o que dá uma eficiência de aproximadamente 82%. Vejam as contas que eu anotei na lousa do laboratório:








Para aqueles que quiserem realizar a experiência, caso não tenham balança, lembrem-se que cada 1 mL de água contém 1 g. Então basta um recipiente com graduação de volume para sabermos a massa de água.
Precaução 
Um alerta é para que tomem cuidado e não aqueçam a água por muito tempo, evitando que ela chegue próxima à temperatura de ebulição (em Piracicaba, 97ºC). O que pode acontecer é que ela pode não ferver durante o aquecimento, mas sim ao ser manipulada (balançada) no momento de retirá-la do forno. Veja neste vídeo curtinho, o perigo envolvido:

Fontes:
http://www.feiradeciencias.com.br/sala08/08_06.asp
http://www.tecmundo.com.br/eletrodomesticos/10978-mitos-e-verdades-sobre-o-micro-ondas.htm
Compartilhe:

Calculando velocidades: uma simples e interessante prática de ensino de Física

Esta semana realizei com os alunos das primeiras séries do ensino médio da escola em que dou aulas de Física, uma atividade prática para determinarmos a velocidade dos veículos passando por uma avenida ao lado da escola, onde a máxima permitida é de 60 km/h (foto).

Momentos antes do início da aula, preparei as condições necessárias para a realização da prática. Tracei inicialmente três linhas no asfalto, separadas por uma distância de 5 metros cada uma. Dessa maneira, os alunos poderiam optar por duas medidas de deslocamento, de 0 a 5 m (foto), ou de 0 a 10 m.
Antes de levar os alunos para o local, conversei com eles na sala sobre as condições de segurança que deveríamos seguir para que ninguém corresse nenhum risco, afinal de contas, a responsabilidade nestes casos recorre sobre a minha pessoa. Feito isso, entreguei a eles alguns cronômetros e fomos a campo recolher as medidas. Cada aluno escolheu uma distância (5 m ou 10 m) e mediram o tempo que quatro veículos gastaram para percorrê-la. Vejam algumas fotos do experimento:

Depois, voltamos para a sala de aula, e pedi a eles que usassem o conceito de velocidade, que eu já havia trabalhado anteriormente nas teorias, para determinarmos os valores com as medidas obtidas na avenida. Como esta é uma atividade sugerida por uma Situação de Aprendizagem que consta do Caderno do Aluno, fornecido pelo Governo do Estado de São Paulo, aproveitei a tabela dada e começamos os cálculos. Depois de algum tempo, todos os alunos já haviam aplicado a fórmula de velocidade (V) que eu passo simplificadamente para eles dessa maneira:
$$\begin{equation*}\large V = \frac{D}{T}\end{equation*}$$ onde D simboliza uma distância percorrida, e T simboliza o intervalo de tempo gasto para percorrê-la. Vejam exemplos de valores de tempos anotados, correspondentes à distância de 10 m:
Os valores aproximados de velocidades da terceira coluna são dados em m/s, pois correspondem à divisão da distância (D)(no caso, 10 m) pelo tempo medido (T), em s (segundos). Os valores de velocidades da última coluna, dados em km/h, correspondem aos valores da terceira coluna multiplicados por 3,6 (fator de conversão de m/s para km/h). Ao explicar para os alunos a origem deste fator de conversão, eu mostro que são feitas duas conversões simultâneas: de metros (m) para quilômetros (km), e também de segundos (s) para horas (h). Como uma hora tem 60 minutos, e cada minuto tem 60 segundos, uma hora tem 60 vezes 60 segundos, que correspondem a 3600 segundos. Como um quilômetro (km) tem 1000 metros (m), se dividirmos 3600 por 1000, obtemos o fator 3,6.
Com esta atividade, os alunos fixaram melhor o conceito de velocidade, essencial para o posterior entendimento dos conceitos de aceleração e força, envolvidos nas Leis de Newton. Ao mesmo tempo, puderam constatar que alguns veículos ultrapassaram a velocidade permitida no local da avenida, como foi o caso do carro 2 e da moto, mostrados na tabela exemplificada acima.
Compartilhe:

A importância da matemática na detecção das Ondas Gravitacionais


Não é sempre que a física produz notícias que se tornam mais visíveis na mídia do que as notícias sobre política, crimes ou esportes. Mas agora, em um espaço de tempo de quatro anos, surgiram duas delas que foram muito divulgadas: a descoberta do bóson de Higgs em 2012 e recentemente a detecção das vibrações do espaço-tempo conhecidas como ondas gravitacionais.

Ambas as descobertas foram consideradas pelos físicos como grandes realizações. A verificação da existência do bóson confirmou a explicação dada pela ciência sobre a origem das massas das partículas fundamentais. As ondas gravitacionais, por outro lado, confirmaram, em especial, que os buracos negros, por vezes, emparelham-se, girando em torno de si e, em seguida, fundem-se produzindo uma explosão cataclísmica. Durante um breve instante de tempo, essa explosão, detectada em setembro de 2015 pelo AdLIGO (um observatório muito grande localizado nos EUA, cujo funcionamento eu expliquei neste post de meu blog) produziu mais de 50 vezes a energia de todas as estrelas do universo juntas, como informou o físico Kip Thorne, durante a conferência de imprensa em 11 de fevereiro, no momento em que anunciou a descoberta.

Quase todos os físicos acreditavam firmemente que o Higgs teria de existir (ou então que teriam passado suas carreiras acreditando em um falso modelo matemático). Da mesma forma, ninguém duvidava que Einstein estava certo sobre  as ondas de gravidade (ou que a sua teoria da relatividade geral estava correta na previsão da existência delas - houve um tempo em que o próprio Einstein teve suas dúvidas). Ambas as descobertas têm algo em comum que reflete uma realização ainda mais surpreendente: o poder da mente humana para discernir características profundamente escondidas sobre a realidade física.
Em ambos os casos, a ideia de que tais fenômenos exóticos existiriam veio do poder do cérebro humano - decifrar o significado físico dos símbolos matemáticos manipulados apenas com a utilização de lápis e papel. Experimentalistas sabiam onde (e como) procurar apenas seguindo roteiros criados pelas mentes dos seres humanos, os quais podiam ver o significado oculto em sua matemática.
Peter Higgs deduziu a existência de uma nova partícula, contemplando as consequências de algumas equações complicadas. Seu artigo apresentando as equações foi rejeitado (os revisores diziam que era apenas matemática sem significado físico). Então Higgs olhou para as equações novamente e notou que estava implícita a existência da partícula, agora nomeada em homenagem a ele. De alguma forma, a sua matemática mostraria algo sobre o universo que ninguém mais tinha suspeitado anteriormente.

Einstein, de forma semelhante, descobriu que havia muito mais física na matemática da relatividade geral do que ele inicialmente conhecia. Após anos de luta, ele reuniu as equações que descrevem a gravidade, e previu com precisão a curvatura da luz de uma estrela passando próxima ao sol. Um pouco mais tarde, ele olhou para suas equações novamente e percebeu que elas continham uma surpresa: ondulações no tecido do espaço-tempo que enviariam mensagens através do universo. Mas como seriam muito fracas, pensou, jamais poderiam ser detectadas por nós.

Mais tarde, Einstein perdeu a fé em sua própria matemática. Na década de 1930, ele tentou mostrar que as ondas gravitacionais não existiriam realmente. Ele preparou um documento tentando mostrar que elas eram fantasmas puramente matemáticos, e não fenômenos com efeitos físicos reais. Mesmo assim, as ondas de gravidade permaneceram como uma implicação teórica da relatividade geral.

Examinando a história da física encontram-se mais exemplos do poder da matemática revelando segredos da realidade. A relatividade geral forneceria mais surpresas do que apenas as ondas gravitacionais, por exemplo. Os buracos negros, as lentes gravitacionais e até, de certa forma, a expansão do universo surgiram a partir das equações de Einstein, antes mesmo de qualquer astrônomo observá-los. Os Quarks, os constituintes dos prótons e nêutrons, mostrou-se na matemática de Murray Gell-Mann antes das provas de sua existência terem sido reveladas em aceleradores de partículas. A antimatéria, o combustível do futuro, na ficção científica, tornou-se um fato científico na mente matemática de Paul Dirac antes dos experimentalistas notarem antipartículas nos raios cósmicos.

Talvez o análogo mais próximo das ondas gravitacionais, porém, tenha sido o aparecimento das ondas de rádio na matemática de James Clerk Maxwell descrevendo o eletromagnetismo. Na década de 1860, Maxwell trabalhou a matemática da eletricidade e do magnetismo e descobriu que a própria luz é uma onda eletromagnética. 
Maxwell quase instantaneamente percebeu que outras ondas eletromagnéticas de frequências diferentes poderiam existir. Duas décadas mais tarde, o físico alemão Heinrich Hertz (figura) procurou e encontrou as novas ondas que Maxwell havia previsto. 

Não se acredita que as ondas gravitacionais irão revolucionar a sociedade da maneira como aconteceu com as ondas de rádio. Mas elas certamente irão abrir um novo campo para explorar o cosmos, da mesma forma como foi feita com os radiotelescópios. De qualquer maneira, independentemente da sua eventual utilização prática, as ondas de gravidade irão sempre ficar como um sinal de que a matemática concebida na mente humana coexiste, em certo sentido, com o tecido da realidade.
Compartilhe: